Synthesis of [3-(Phosphonomethoxy)pyrrolidin-1-yl] Derivatives of Pyrimidines and Purines: Analogues of $\mathbf{2}^{\prime}, \mathbf{3}^{\prime}$-Dideoxynucleotides

Michael R. Harnden, Richard L. Jarvest and Martin J. Parratt*
SmithKline Beecham Pharmaceuticals, Great Burgh, Yew Tree Bottom Road, Epsom, Surrey, KT18 5XQ, UK

Abstract

Pyrrolidin-1-yl derivatives of pyrimidines and purines, incorporating the phosphonomethoxy group as a phosphate mimic, were prepared as analogues of $2^{\prime}, 3^{\prime}$-dideoxynucleotides. The heterocyclic bases uracil, thymine, cytosine, adenine and hypoxanthine were constructed upon the primary amino group of the N-aminopyrrolidine 7 , which was prepared by reaction of the dibromide $\mathbf{6}$ with hydrazine.

The discovery of the potent antiviral activity of the acyclonucleotide analogues 9 -[2-(phosphonomethoxy)ethyl]adenine (PMEA) 1 and (S)-9-[3-hydroxy-2-(phosphonomethoxy)propyl]adenine [(S)-HPMPA] $2{ }^{1}$ has prompted great interest in this class of compounds. The antiviral activity of these phosphonates is not restricted to purine derivatives and the cytosine analogue of 2 has been shown to exhibit potent activity against some members of the herpes virus family. ${ }^{2,3}$ The use of the phosphonomethoxy group as a stable isosteric mimic of the (isomeric) phosphate monoester function is now being widely explored in both the acyclic ${ }^{2-13}$ and the cyclic ${ }^{14-17}$ series of nucleotide analogues.

Recently a new series of dideoxynucleoside analogues of type 3 containing a pyrrolidine ring linked to the base via the heteroatom has been developed. ${ }^{18-20}$ The pyrrolidine analogues of some 3^{\prime}-substituted thymidine nucleosides have also been described very recently. ${ }^{21}$ In this report we describe the preparation of the [3-(phosphonomethoxy)pyrrolidin-1-yl] derivatives 4 of pyrimidines and purines as novel analogues of 2', 3'-dideoxynucleotides.

The reported syntheses of pyrrolidinyl nucleoside analogues used N-aminopyrrolidine precursors to pyrimidine nucleosides ${ }^{18.20 .21}$ or routes via the various N-amino bases to purine or pyrimidine nucleosides. ${ }^{19}$ We elected to employ an N aminopyrrolidine phosphonate as a common intermediate to both pyrimidine and purine nucleotide analogues.

$\mathrm{R}=\mathrm{H}, \quad$ PMEA 1
$R=\mathrm{CH}_{2} \mathrm{OH}$, (S)-HPMPA 2

$R=\mathrm{CH}_{2} \mathrm{OH} \quad 3$ $R=\mathrm{OCH}_{2} \mathrm{P}(\mathrm{O})(\mathrm{OH})_{2} 4$

Results and Discussion

Arbusov reaction of the α-chloro ether derived from 1,4 dibromobutan-2-ol 5 gave a 51% overall yield of the diethyl phosphonate 6 (Scheme 1). Treatment of dibromide 6 with hydrazine hydrate then gave the unstable 1-aminopyrrolidine 7 , which was converted into the 1 -ureidopyrrolidine 8 in 52% yield using trimethylsilyl isocyanate. Attempted condensation of compound 8 with methyl 3,3-dimethoxypropionate, in the presence of either potassium tert-butoxide in tert-butyl alcohol or sodium hydride in dimethyl sulfoxide (DMSO) failed, probably due to the incompatibility of the phosphonate group with the strongly basic conditions. However, an alternative cyclization method ${ }^{22,23}$ avoiding strong base was successfully exploited. Acylation of compound 8 (on the NH_{2} group) using

3-ethoxyacryloyl chloride in the presence of pyridine afforded the intermediate acrylamide in 76% yield, which cyclized smoothly upon treatment with sulfuric acid to give the uracil 9 in 87% yield. De-esterification of compound 9 with bromotrimethylsilane afforded the free phosphonic acid 10 in 86% yield.

The uracil 9 was converted into the cytosine 11 in 57% yield via the triazolide. ${ }^{24}$ De-esterification of compound 11 then gave the phosphonic acid 12 in 79% yield. Acylation of the 1 -ureidopyrrolidine 8 with ethyl (E)-3-ethoxy-2-methylacryloyl chloride gave the intermediate acrylamide, acid-catalysed cyclization of which gave the thymine derivative 13 in 13% overall yield. Compound 13 was de-esterified to give the phosphonic acid 14 in 84% yield.

The key intermediate 7 was also progressed to purine derivatives via an imidazole intermediate ${ }^{25,26}$ (Scheme 2). Treatment of compound 7 with ethyl N -(carbamoylcyanomethyl)formimidate gave the imidazole 15 in 28% yield, which was converted into the free phosphonic acid 16 in 56% yield. Compound 15 was converted ${ }^{27}$ into the hypoxanthine 17 in 63% yield using triethyl orthoformate, subsequent deprotection of 17 then yielding the phosphonic acid 18 in 73% yield.

The hypoxanthine 17 was successfully transformed in 22% yield into the adenine 19 via the 2,4,6-triisopropylbenzenesulfonate (a method previously used for transformation of a guanine derivative into a 2,6-diaminopurine ${ }^{28}$), following unsuccessful attempts via the trifluoromethanesulfonate ${ }^{29}$ (which appeared to result in decomposition). Attempted conversion of the hypoxanthine 17 into the 6-chloropurine using phosphoryl trichloride and N, N-diethylaniline ${ }^{30}$ caused loss of one of the phosphonate ester groups and so this was not a viable route to the adenine 19 . Treatment of compound 19 with bromotrimethylsilane gave the phosphonic acid 20 in 72% yield.

A number of attempts to prepare the guanine derivative from amide 15 were not successful, the phosphonate ester moiety proving to be unstable to a variety of standard reaction conditions for this transformation.

To assess the state of ionization of these novel nucleotide analogues at physiological pH the $\mathrm{p} K_{\mathrm{a}}$ profiles were determined for compounds 9 and 14 (Table 1). The pyrrolidine nitrogen has very low basicity (as would be expected for substituted hydrazines of this type ${ }^{*, 31}$) and hence it is unlikely to participate in zwitterion formation with the phosphonic acid function. Consistent with this is the lack of any shift in the NMR signals of the $\mathrm{C}-2^{\prime}$ or $\mathrm{C}-5^{\prime}$ pyrrolidine ring protons for compounds $10,12,14,16,18$ and 20 relative to their respective

[^0]

Scheme 1 Reagents and conditions: i, $\mathrm{HCl},\left(\mathrm{CH}_{2} \mathrm{O}\right)_{n}, \mathrm{CaCl}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; ii, $(\mathrm{EtO})_{3} \mathrm{P}$, heat; iii, $\mathrm{H}_{2} \mathrm{NNH}_{2}$, EtOH ; iv, $\mathrm{Me}_{3} \mathrm{SiNCO}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; v, EtOCH $=\mathrm{CHCOCl}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; vi, $0.5 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}$, heat; vii, $\mathrm{Me}_{3} \mathrm{SiBr}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; viii, 4-ClC $\mathrm{H}_{4} \mathrm{OP}(\mathrm{O}) \mathrm{Cl}_{2}$, 1,2,4-triazole, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$; ix, $\mathrm{NH}_{3}, \mathrm{MeOH} ; \mathrm{x}, \mathrm{EtOCH}=\mathrm{C}(\mathrm{Me}) \mathrm{COCl}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$
diethyl esters $9,11,13,15,17$ and 19. Additionally the NMR spectrum of the cytosine derivative 12 does not show the downfield shift and splitting of the NH_{2} signal characteristic of protonation at $\mathrm{N}-3 .{ }^{32}$ Therefore, in $\left[{ }^{2} \mathrm{H}_{6}\right.$]DMSO, the cytosine moiety of compound $\mathbf{1 2}$ must also remain unprotonated. However, the IR bands at 1735 and $1680 \mathrm{~cm}^{-1}$ indicate that compound 12 is zwitterionic in the solid state, the N-3 atom being the proton acceptor. ${ }^{33}$
The conformation around the pseudo-glycosidic bond of compound 11 was investigated using NOE experiments. Irradiation of the $6-\mathrm{H}$ signal produced a positive NOE enhancement of similar magnitude (medium) for both of the $2^{\prime}-\mathrm{H}$ signals, and both of the $5^{\prime}-\mathrm{H}$ signals. Hence, although these novel nucleotide analogues presumably exist as a mixture of α and β forms due to inversion at the pyrrolidine nitrogen, a significant proportion of the mixture may be in the anti conformation characteristic of the natural nucleosides.
The nucleotide analogues $10,12,14,16,18$ and 20 were tested

Scheme 2 Reagents and conditions: i, $\mathrm{EtOCH}=\mathrm{NCH}(\mathrm{CN}) \mathrm{CONH}_{2}$, EtOH ; ii, $\mathrm{Me}_{3} \mathrm{SiBr}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; iii, HCl then $(\mathrm{EtO})_{3} \mathrm{CH}$, DMF, heat; iv, 2,4,6- $\mathrm{Pr}_{3}{ }_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{SO}_{2} \mathrm{Cl}, \mathrm{Et}_{3} \mathrm{~N}$, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; \mathrm{v}, \mathrm{NH}_{3}$, EtOH , heat

Table 1 Dissociation constants for compounds 9 and 14

		Acidic $\mathrm{p} K_{\mathrm{a}}{ }^{a}$		
Compound	Basic $\mathrm{p} K_{\mathrm{a}}{ }^{a}$	1^{b}	2^{c}	3^{d}
9	$<2.0^{e}$			9.16
14	$<0.7^{\delta}$	1.75	6.91	9.47

${ }^{a}$ Measured using a Metrohm 670 Titroprocessor or a Hewlett-Packard 845A diode array spectrophotometer. ${ }^{b}$ First dissociation constant of the phosphonic acid. ${ }^{\text {c }}$ Second dissociation constant of the phosphonic acid. ${ }^{d}$ Dissociation constant of the pyrimidine moiety. ${ }^{e}$ By potentiometric methods no end-point was observed down to $\mathrm{pH} 2 .^{f}$ By potentiometric methods no end-point was observed down to pH 2 and by UV methods no spectral changes were observed over the pH range $3.2-0.7$.
at concentrations up to $100 \mu \mathrm{~g} \mathrm{~cm}^{-3}$ for inhibition of virus replication in cell culture. Compound 20 showed good activity against visna virus in sheep choroid plexus cells (minimum inhibitory concentration $3 \mu \mathrm{~g} \mathrm{~cm}^{-3}$), compounds $10,12,14,16$ and 18, however, being inactive. All compounds were found to be devoid of activity against herpes simplex virus types 1 and 2, varicella zoster virus and cytomegalovirus in MRC-5 (human fibroblast) cells. In these tests no toxicity to the cell monolayers was observed.

Experimental

M.p.s were determined using a Reichert Kofler apparatus and are uncorrected. NMR spectra were recorded with a JEOL GX-

270270 MHz spectrometer and J-values are given in Hz . NOE difference spectroscopy was performed on a Bruker AMX400 spectrometer using standard software and CDCl_{3} as solvent. IR spectra were recorded with a Perkin-Elmer 580 spectrometer, and UV spectra with a Uvikon 810 spectrometer. Mass spectra were recorded and accurate masses were measured on a JEOL JMS-SX 102 spectrometer. Microanalyses were performed on a Carlo Erba model 1106 analyser. Column chromatography was carried out on Merck 7736 silica gel. All compounds were homogeneous by TLC on silica gel $60 \mathrm{~F}_{254}$-coated glass plates.

Diethyl (1,4-Dibromobutan-2-yloxy)methylphosphonate. 6.-(a) Hydrogen chloride was bubbled into a stirred mixture of 1,4-dibromobutan-2-ol $5(10.0 \mathrm{~g}, 43.1 \mathrm{mmol})$, paraformaldehyde $(1.30 \mathrm{~g}, 43.1 \mathrm{mmol})$, and anhydrous calcium chloride (20.8 g) in dichloromethane $\left(100 \mathrm{~cm}^{3}\right)$ for 1.5 h . The mixture was filtered and the solvent was removed to leave a light brown oil (10.6 g) which was used without further purification. ${ }^{1} \mathrm{H}$ NMR analysis indicated approximately 50% conversion into the desired chloro ether; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.20\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.50$ $\left.\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Br}\right), 4.10(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOCH})_{2}\right)$ and $5.60(2 \mathrm{H}, \mathrm{s}$, CHOCH_{2}).
(b) A mixture of crude 1,4-dibromo-2-chloromethoxybutane ($7.44 \mathrm{~g}, \sim 13.3 \mathrm{mmol}$) and triethyl phosphite $(4.41 \mathrm{~g}, 26.5 \mathrm{mmol})$ was heated at $100^{\circ} \mathrm{C}$ for 1.75 h . The mixture was cooled to room temperature and purified by column chromatography on silica gel with ethyl acetate-hexane ($1: 1$) then ethyl acetate as eluent to afford the phosphonate 6 as a liquid $(6.0 \mathrm{~g}, 51 \%$ from 5); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1255(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.36(6 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me})$, $2.17\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.45-3.75\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{Br}\right), 3.75-4.15$ (3 $\mathrm{H}, \mathrm{m}, \mathrm{CHOCH} 2 \mathrm{P}$) and $4.19(4 \mathrm{H}$, pseudo quintet, $J 7$, $\mathrm{OCH}_{2} \mathrm{Me}$); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 16.40$ (d, ${ }^{3} J_{\mathrm{PC}} 6.8$, Me), 29.17 (s , $\mathrm{CCH}_{2} \mathrm{C}$), $33.12\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Br}\right), 36.37\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Br}\right), 62.49\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}} \mathbf{6 . 1}\right.$, $\left.\mathrm{OCH}_{2} \mathrm{Me}\right), 64.20\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}} 166.8, \mathrm{OCH}_{2} \mathrm{P}\right)$ and $78.74\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}\right.$ $12.2, \mathrm{COCH}_{2} \mathrm{P}$) (Found: $\mathrm{C}, 28.6 ; \mathrm{H}, 5.2 . \mathrm{C}_{9} \mathrm{H}_{19} \mathrm{Br}_{2} \mathrm{O}_{4} \mathrm{P}$ requires C, $28.3 ; \mathrm{H}, 5.0 \%$).

Diethyl (1-Aminopyrrolidin-3-yloxy)methylphosphonate 7.To a solution of the phosphonate $6(2.74 \mathrm{~g}, 7.20 \mathrm{mmol})$ in ethanol ($12.4 \mathrm{~cm}^{3}$) was added hydrazine monohydrate (2.88 g , $2.80 \mathrm{~cm}^{3}, 57.5 \mathrm{mmol}$) and the mixture was stirred at room temperature for 18 h before being partitioned between water (75 cm^{3}) and chloroform ($8 \times 75 \mathrm{~cm}^{3}$), and the combined organic portions were dried $\left(\mathrm{MgSO}_{4}\right)$ and filtered, and the solvent was removed to give diethyl (1-aminopyrrolidin-3-yloxy)methylphosphonate $7(1.76 \mathrm{~g}, 97 \%)$ as a pale yellow oil which was unstable and was therefore used without further purification; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3450\left(\mathrm{NH}_{2}\right), 1615\left(\mathrm{NH}_{2}\right)$ and $1250(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}^{-}}$ $\left(\mathrm{CDCl}_{3}\right) 1.33(6 \mathrm{H}, \mathrm{t}, J 6, \mathrm{Me}), 2.00\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CCH}_{2} \mathrm{C}\right), 2.50-3.00$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.73\left(2 \mathrm{H}, \mathrm{d}, J 9, \mathrm{OCH}_{2} \mathrm{P}\right)$ and $4.20(5 \mathrm{H}, \mathrm{m}$, $\mathrm{OCH}_{2} \mathrm{Me}$ and $\mathrm{CH} \mathrm{OCH}_{2}$).

Diethyl (1-Ureidopyrrolidin-3-yloxy)methylphosphonate 8.To a solution of the 1-aminopyrrolidine $7(0.66 \mathrm{~g}, 2.62 \mathrm{mmol})$ in dry dichloromethane $\left(5.6 \mathrm{~cm}^{3}\right)$ stirred at room temperature was added trimethylsilyl isocyanate ($0.84 \mathrm{~g}, 0.99 \mathrm{~cm}^{3}, 7.29 \mathrm{mmol}$). After 2.5 h the reaction was quenched by addition of methanol and the solvents were removed to leave an oil, which was purified by column chromatography on silica gel with dichloro-methane-methanol $(19: 1,4: 1)$ as eluent to afford the 1 ureidopyrrolidine 8 as a gum $(0.40 \mathrm{~g}, 52 \%) ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3460$ $\left(\mathrm{NH} / \mathrm{NH}_{2}\right), 3300\left(\mathrm{NH} / \mathrm{NH}_{2}\right), 3200\left(\mathrm{NH} / \mathrm{NH}_{2}\right), 1680(\mathrm{C}=\mathrm{O})$ and $1240(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.23(6 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}), 1.70(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CCH}_{2} \mathrm{C}\right), 2.02\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CCH}_{2} \mathrm{C}\right), 2.50-3.20\left(4 \mathrm{H}\right.$, br m, $\left.\mathrm{CH}_{2} \mathrm{~N}\right)$, $3.75\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 9, \mathrm{OCH}_{2} \mathrm{P}\right), 4.04\left(5 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Me}+\right.$ $\mathrm{CHOCH} 2), 5.90\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right)$ and $6.96(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 16.30\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{PC}} 6.8, \mathrm{Me}\right), 30.01\left(\mathrm{~s}, \mathrm{CCH}_{2} \mathrm{C}\right), 54.58(\mathrm{~s}$, $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 60.86\left(\mathrm{br} \mathrm{s}, \mathrm{CH}_{2} \mathrm{~N}\right), 62.35\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{PC}} 6.1, \mathrm{OCH}_{2} \mathrm{Me}\right), 62.80$
(d, ${ }^{1} J_{\mathrm{PC}} 167.5, \mathrm{OCH}_{2} \mathrm{P}$), $79.61\left(\mathrm{br}, \mathrm{s}, \mathrm{COCH}_{2} \mathrm{P}\right)$ and 160.08 (s, HNCONH_{2}) (Found: C, 40.5; H, 7.6; N, 14.1\%; $\mathrm{MH}^{+}, 296.1373$. $\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{P}$ requires $\mathrm{C}, 40.7 ; \mathrm{H}, 7.5 ; \mathrm{N}, 14.2 \% ; M \mathrm{H}$, 296.1375).

1-[3-(Diethoxyphosphorylmethoxy)pyrrolidin-1-yl]uracil 9.(a) 3-Ethoxyacryloyl chloride $(0.4 \mathrm{~g}, 2.97 \mathrm{mmol})$ was added to a solution of the 1 -ureidopyrrolidine $8(0.76 \mathrm{~g}, 2.57 \mathrm{mmol})$ and pyridine ($0.24 \mathrm{~g}, 0.25 \mathrm{~cm}^{3}, 3.03 \mathrm{mmol}$) in dry dichloromethane (5 cm^{3}) and the mixture was stirred at room temperature for 18 h before being partitioned between water $\left(10 \mathrm{~cm}^{3}\right)$ and dichloromethane $\left(2 \times 10 \mathrm{~cm}^{3}\right)$. The combined organic portions were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated. The residue was purified by column chromatography on silica gel with ethyl acetate-methanol $(19: 1,7: 1)$ as eluent to give diethyl $\{[1-(3-$ ethoxyacryloyl)ureido] pyrrolidin-3-yloxy\}methylphosphonate as a gum $(0.76 \mathrm{~g}, 76 \%) ; v_{\max }($ film $) / \mathrm{cm}^{-1} 3220(\mathrm{NH}), 3150(\mathrm{NH})$, $1715(\mathrm{C}=\mathrm{O}), 1678(\mathrm{C}=\mathrm{O}), 1615(\mathrm{C}=\mathrm{C})$ and $1240(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.24(9 \mathrm{H}, \mathrm{m}, \mathrm{Me}), 1.75\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CCH}_{2} \mathrm{C}\right), 2.07(1$ $\mathrm{H}, \mathrm{m}, \mathrm{CCH}_{2} \mathrm{C}$), 2.70-3.25 (4 H, br m, $\mathrm{CH}_{2} \mathrm{~N}$), $3.76(2 \mathrm{H}, \mathrm{d}, J 9$, $\left.\mathrm{OCH}_{2} \mathrm{P}\right), 3.90-4.20\left(7 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Me}+\mathrm{CHOCH}_{2}\right), 5.51(1$ $\mathrm{H}, \mathrm{d}, J 12, \mathrm{OCH}=\mathrm{C} H), 7.55(1 \mathrm{H}, \mathrm{d}, J 12, \mathrm{OCH}=\mathrm{CH}), 9.34(1 \mathrm{H}, \mathrm{s}$, $\mathrm{NH})$ and $10.02(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$ (Found: $\mathrm{MH}, 394.1747$. $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{P}$ requires $M \mathrm{H}, 394.1743$).
(b) A mixture of diethyl \{[1-(3-ethoxyacryloyl)ureido]-pyrrolidin-3-yloxy $\}$ methylphosphonate $(0.61 \mathrm{~g}, 1.55 \mathrm{mmol})$ and $0.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ sulfuric acid ($11.5 \mathrm{~cm}^{3}$) was heated at $100^{\circ} \mathrm{C}$ for 50 min . The cooled mixture was partitioned between saturated aq. sodium hydrogen carbonate ($11 \mathrm{~cm}^{3}$) and dichloromethane ($5 \times 40 \mathrm{~cm}^{3}$). The combined organic portions were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated to afford the uracil 9 as a pale yellow gum $(0.47 \mathrm{~g}, 87 \%) ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 262\left(\varepsilon / \mathrm{dm}^{3}\right.$ $\left.\mathrm{mol}^{-1} \mathrm{~cm}^{-1} 8590\right)$; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3000(\mathrm{NH}), 1720\left(\mathrm{C}^{2}=\mathrm{O}\right)$, $1680\left(\mathrm{C}^{4}=\mathrm{O}\right), 1240(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.24(6 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me})$, $1.80\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 2.15\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 3.20-3.35\left(3 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}_{2}\right), 3.49\left(1 \mathrm{H}\right.$, dd, $J 6$ and $\left.10,2^{\prime}-\mathrm{H}\right), 3.79(2 \mathrm{H}, \mathrm{d}, J 9$, $\left.\mathrm{PCH}_{2} \mathrm{O}\right), 4.05\left(4 \mathrm{H}\right.$, pseudo quintet, $\left.J 7, \mathrm{CH}_{2} \mathrm{O}\right), 4.20(1 \mathrm{H}, \mathrm{m}$, $\left.3^{\prime}-\mathrm{H}\right), 5.43(1 \mathrm{H}, \mathrm{d}, J 8,5-\mathrm{H}), 7.61(1 \mathrm{H}, \mathrm{d}, J 8,6-\mathrm{H})$ and $11.30(1$ $\mathrm{H}, \mathrm{s}, 3-\mathrm{H}$) (Found: $\mathrm{MH}^{+}, 348.1325 . \mathrm{C}_{13} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{P}$ requires MH, 348.1325).

1-[3-(Phosphonomethoxy)pyrrolidin-1-yl]uracil 10.-Bromotrimethylsilane $(0.97 \mathrm{~g}, 6.33 \mathrm{mmol})$ was added to a solution of the uracil $9(110 \mathrm{mg}, 0.32 \mathrm{mmol})$ in dry dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$ and the mixture was stirred at room temperature for 20 h before being evaporated to dryness, then the residue was azeotroped with methanol $(\times 3)$. The residue was purified by column chromatography on C_{18} silica gel with water as eluent to give the phosphonic acid 10 as a hygroscopic solid ($80 \mathrm{mg}, 86 \%$); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 263\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 8465\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $3420\left(\mathrm{H}_{2} \mathrm{O}\right), 3170(\mathrm{NH}), 1715\left(\mathrm{C}^{2}=\mathrm{O}\right), 1680\left(\mathrm{C}^{4}=\mathrm{O}\right)$ and 1180 $\left[\left(\mathrm{PO}_{3} \mathrm{H}\right)^{-}\right] ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.82\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 2.15\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\right.$ $\mathrm{H}), 3.15-3.35\left(3 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}_{2}\right), 3.50\left(3 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right.$ and $\left.\mathrm{PCH}_{2} \mathrm{O}\right), 4.23\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 5.44(1 \mathrm{H}, \mathrm{d}, J 8,5-\mathrm{H}), 7.63(1 \mathrm{H}, \mathrm{d}$, $J 8,6-\mathrm{H})$ and $11.30(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$ (Found: C, 35.0; H, 5.3; N, 13.3. $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{P} \cdot \mathrm{H}_{2} \mathrm{O}$ requires $\left.\mathrm{C}, 35.0 ; \mathrm{H}, 5.2 ; \mathrm{N}, 13.6 \%\right)$.

1-[3-(Diethoxyphosphorylmethoxy) pyrrolidin-1-yl]cytosine

 11.-To a solution of the uracil $9(246 \mathrm{mg}, 0.71 \mathrm{mmol})$ in dry pyridine ($3.9 \mathrm{~cm}^{3}$) stirred at room temperature was added 4chlorophenyl phosphorodichloridate ($0.23 \mathrm{~g}, 0.94 \mathrm{mmol}$). After 20 min 1,2,4-triazole ($130 \mathrm{mg}, 1.88 \mathrm{mmol}$) was added and the mixture was stirred at room temperature for 18 h . To the solution were added ammonia ($d 0.88 \mathrm{~g} \mathrm{~cm}^{-3} ; 0.4 \mathrm{~cm}^{3}$) and methanol $\left(0.8 \mathrm{~cm}^{3}\right)$, and the mixture was stirred for a further 4 h . The solvent was removed, and the residue was azeotroped with toluene ($\times 2$) before being purified by column chromatography on silica gel with dichloromethane-methanol $(9: 1,4: 1)$ aseluent to afford the cytosine 11 as a gum ($140 \mathrm{mg}, 57 \%$); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 273\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 6957\right)$ and $235(\varepsilon 7130)$; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} \quad 3360 \quad\left(\mathrm{NH}_{2}\right), \quad 3220 \quad\left(\mathrm{NH}_{2}\right), \quad 1660 \quad\left(\mathrm{NH}_{2}\right)$ and $1270(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.25(6 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}), 1.80(1 \mathrm{H}$, $\left.\mathrm{m}, 4^{\prime}-\mathrm{H}\right), 2.20\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 3.20\left(1 \mathrm{H}\right.$, dd, $J 4$ and $\left.9,2^{\prime}-\mathrm{H}\right)$, 3.29 $\left(2 \mathrm{H}, \mathrm{t}, J 7,5^{\prime}-\mathrm{H}_{2}\right), 3.53\left(1 \mathrm{H}, \mathrm{dd}, J 6\right.$ and $\left.9,2^{\prime}-\mathrm{H}\right), 3.78(2 \mathrm{H}, \mathrm{d}, J 9$, $\left.\mathrm{PCH}_{2} \mathrm{O}\right), 4.05\left(4 \mathrm{H}\right.$, pseudo quintet, $\left.J 7, \mathrm{CH}_{2} \mathrm{O}\right), 4.23(1 \mathrm{H}, \mathrm{m}$, $\left.3^{\prime}-\mathrm{H}\right), 5.55(1 \mathrm{H}, \mathrm{d}, J 7,5-\mathrm{H}), 7.10\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right)$ and $7.51(1 \mathrm{H}$, d, $J 7,6-\mathrm{H}$) (Found: $\mathrm{MH}^{+}, 347.1483 . \mathrm{C}_{13} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{P}$ requires $M \mathrm{H}, 347.1485$).

1-[3-(Phosphonomethoxy)pyrrolidin-1-yl]cytosine 12.-To a solution of the cytosine 11 ($120 \mathrm{mg}, 0.34 \mathrm{mmol}$) in dichloromethane ($4 \mathrm{~cm}^{3}$) was added bromotrimethylsilane $(0.71 \mathrm{~g}, 4.64$ mmol) and the mixture was stirred at room temperature for 18 h and then evaporated to dryness, and the residue was azeotroped with methanol $(\times 3)$ before being purified by column chromatography on C_{18} silica gel with water as eluent to give the cytosine 12 as a solid ($79 \mathrm{mg}, 79 \%$), m.p. $171-172{ }^{\circ} \mathrm{C}$; $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} \quad 274\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 6725\right) ; v_{\max }(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 3425\left(\mathrm{H}_{2} \mathrm{O}\right), 3187\left(\mathrm{NH}_{2}\right), 3100\left(\mathrm{NH}_{2}\right), 1735(\mathrm{C}=\mathrm{O}), 1680$ $\left(\mathrm{C}=\mathrm{N}^{+}\right)$and $1200\left[\left(\mathrm{PO}_{3} \mathrm{H}\right)^{-}\right] ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.80(1 \mathrm{H}, \mathrm{m}$, $\left.4^{\prime}-\mathrm{H}\right), 2.18\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 3.18\left(1 \mathrm{H}, \mathrm{dd}, J 4\right.$ and $\left.10,2^{\prime}-\mathrm{H}\right), 3.29$ $\left(2 \mathrm{H}, \mathrm{t}, J 7,5^{\prime}-\mathrm{H}_{2}\right), 3.50\left(3 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right.$ and $\left.\mathrm{PCH}_{2} \mathrm{O}\right), 4.25(1 \mathrm{H}, \mathrm{m}$, $\left.3^{\prime}-\mathrm{H}\right), 5.59(1 \mathrm{H}, \mathrm{d}, J 7,5-\mathrm{H}), 7.30\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right)$ and $7.57(1 \mathrm{H}, \mathrm{d}$, $J 7,6-\mathrm{H}$) (Found: C, $36.0 ; \mathrm{H}, 5.9 ; \mathrm{N}, 18.7 . \mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{5} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathbf{C}, 36.1 ; \mathrm{H}, 6.1 ; \mathrm{N}, 18.7 \%)$.

1-[3-(Diethoxyphosphorylmethoxy)pyrrolidin-1-yl]thymine 13.-(a) 3-Ethoxy-2-methylacryloyl chloride ($0.69 \mathrm{~g}, 4.64 \mathrm{mmol}$) was added to a solution of compound $8(1.19 \mathrm{~g}, 4.03 \mathrm{mmol})$ and pyridine ($0.38 \mathrm{~g}, 4.85 \mathrm{mmol}$) in dichloromethane ($7.8 \mathrm{~cm}^{3}$) and the mixture was stirred at room temperature for 18 h . The mixture was partitioned between water $\left(10 \mathrm{~cm}^{3}\right)$ and dichloromethane ($2 \times 10 \mathrm{~cm}^{3}$). The combined organic portions were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated. The residue was purified by column chromatography on silica gel with ethyl acetate-methanol ($49: 1,9: 1$) as eluent to afford diethyl \{[1-(3-ethoxy-2-methylacryloyl)ureido]pyrrolidin-3-yloxy\}methyl-
phosphonate as a gum ($0.37 \mathrm{~g}, 22 \%$); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 3220(\mathrm{NH})$, $1695(\mathrm{C}=\mathrm{O}), 1655(\mathrm{C}=\mathrm{O})$ and $1240(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.24$ $\left(9 \mathrm{H}, \mathrm{m}, \mathrm{Me} \mathrm{CH}_{2} \mathrm{O}\right), 1.62(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.75\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 2.05$ $\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 2.75-3.15\left(4 \mathrm{H}, \mathrm{br} \mathrm{m}, 2^{\prime}-\right.$ and $\left.5^{\prime}-\mathrm{H}_{2}\right), 3.75(2 \mathrm{H}, \mathrm{d}$, $\left.J 9, \mathrm{PCH}_{2} \mathrm{O}\right), 4.10\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 7.52(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}), 9.45(1$ $\mathrm{H}, \mathrm{s}, \mathrm{NH}$) and $9.70(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$; FABMS (3-nitrobenzyl alcohol/sodium acetate) $430\left(\mathrm{MNa}^{+}\right)$.
(b) A mixture of diethyl \{[1-(3-ethoxy-2-methylacryloyl)ureido] pyrrolidin-3-yloxy \}methylphosphonate $(0.36 \mathrm{~g}, 0.88$ mmol) and $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$ sulfuric acid ($6.5 \mathrm{~cm}^{3}$) was heated at $100{ }^{\circ} \mathrm{C}$ for 1.8 h . The mixture was cooled, saturated aq. sodium hydrogen carbonate ($6.2 \mathrm{~cm}^{3}$) was added, and the resulting solution was extracted with dichloromethane ($5 \times 25 \mathrm{~cm}^{3}$). The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated to dryness. The residue was purified by column chromatography on silica gel with dichloromethane-methanol ($49: 1,19: 1$) as eluent to afford the thymine 13 as a gum ($0.19 \mathrm{~g}, 59 \%$); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 267\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 8870\right) ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ $1700(\mathrm{C}=\mathrm{O})$ and $1240(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.25(6 \mathrm{H}, \mathrm{t}, J 7$, $\left.\mathrm{MeCH} \mathrm{C}_{2} \mathrm{O}\right), 1.72(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.80\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 2.14\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\right.$ H), $3.15-3.35\left(3 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}_{2}\right), 3.48(1 \mathrm{H}, \mathrm{dd}, J 10$ and 6 , $\left.2^{\prime}-\mathrm{H}\right), 3.78\left(2 \mathrm{H}, \mathrm{d}, J 9, \mathrm{PCH}_{2} \mathrm{O}\right), 4.05(4 \mathrm{H}$, pseudo quintet, $J 7$, $\mathrm{CH}_{2} \mathrm{O}$), $4.22\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 7.53(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H})$ and $11.28(1 \mathrm{H}, \mathrm{s}$, 3-H) (Found: $\mathrm{MH}^{+}, 362.1478 . \mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{P}$ requires MH , 362.1481).

1-[3-(Phosphonomethoxy)pyrrolidin-1-yl]thymine 14.-To a solution of the thymine $13(0.16 \mathrm{~g}, 0.44 \mathrm{mmol})$ in dry dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$ was added bromotrimethylsilane (1.16
$\mathrm{g}, 7.58 \mathrm{mmol}$) and the mixture was stirred at room temperature for 18 h . The solution was evaporated and the residue was azeotroped with methanol $(\times 3)$. The residue was purified by column chromatography on C_{18} silica gel with water as eluent to afford the phosphonic acid 14 as a powder ($0.12 \mathrm{~g}, 84 \%$), m.p. $106-108{ }^{\circ} \mathrm{C} ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 269\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 8450\right)$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3420\left(\mathrm{H}_{2} \mathrm{O}\right), 3170(\mathrm{NH}), 1705(\mathrm{C}=\mathrm{O})$ and 1205 $\left[\left(\mathrm{PO}_{3} \mathrm{H}\right)^{-}\right] ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.73(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.82(1 \mathrm{H}, \mathrm{m}$, $\left.4^{\prime}-\mathrm{H}\right), 2.13\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 3.10-3.35\left(3 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}_{2}\right)$, $3.47\left(1 \mathrm{H}, \mathrm{dd}, J 10\right.$ and $\left.6,2^{\prime}-\mathrm{H}\right), 3.52\left(2 \mathrm{H}, \mathrm{d}, J 9, \mathrm{PCH}_{2} \mathrm{O}\right), 7.55$ $(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H})$ and $11.27(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$ (Found: C, 36.3; H, $5.5 ; \mathrm{N}$, 12.7. $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{P} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 36.15 ; \mathrm{H}, 5.8 ; \mathrm{N}$, 12.65%).

Diethyl [1-(5-Amino-4-carbamoylimidazol-1-yl)pyrrolidin-3yloxy]methylphosphonate 15.-A mixture of compound 7 (2.63 $\mathrm{g}, 10.4 \mathrm{mmol}$) and ethyl N -(carbamoylcyanomethyl)formimidate ($1.78 \mathrm{~g}, 10.4 \mathrm{mmol}$) in ethanol $\left(7 \mathrm{~cm}^{3}\right)$ was heated under reflux for 5 min , then allowed to cool. The solvent was removed and the residue was purified by column chromatography on silica gel with dichloromethane-methanol ($19: 1,9: 1$) as eluent to afford the imidazole 15 as a gum ($1.07 \mathrm{~g}, 28 \%$); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm}$ $267\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 11400\right)$; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3300\left(\mathrm{NH}_{2}\right)$, $1650(\mathrm{C}=\mathrm{O})$ and $1230(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.25(6 \mathrm{H}, \mathrm{t}, J 7$, $\mathrm{Me}), 2.00\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 2.30\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 3.15-3.30(3 \mathrm{H}, \mathrm{m}$, $2^{\prime}-\mathrm{H}$ and $5^{\prime}-\mathrm{H}_{2}$), $3.41\left(1 \mathrm{H}, \mathrm{dd}, J 6\right.$ and $\left.10,2^{\prime}-\mathrm{H}\right), 3.85(2 \mathrm{H}, \mathrm{dd}, J$ 9, $\left.\mathrm{PCH}_{2} \mathrm{O}\right), 4.07\left(4 \mathrm{H}\right.$, pseudo quintet, $\left.J 7, \mathrm{CH}_{2} \mathrm{O}\right), 4.25(1 \mathrm{H}, \mathrm{m}$, $\left.3^{\prime}-\mathrm{H}\right), 5.57\left(2 \mathrm{H}, \mathrm{br}\right.$ s, $\mathrm{D}_{2} \mathrm{O}$ exchangeable, $\left.\mathrm{NH}_{2}\right), 6.63(2 \mathrm{H}, \mathrm{s}$, $\mathrm{D}_{2} \mathrm{O}$ exchangeable, NH_{2}) and $7.51(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ (Found: MH^{+}, 362.1585. $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{P}$ requires $M \mathrm{H}, 362.1593$).
[1-(5-Amino-4-carbamoylimidazol-1-yl)pyrrolidin-3-yloxy]methylphosphonic Acid 16.-To a solution of the imidazole 15 ($160 \mathrm{mg}, 440 \mu \mathrm{~mol}$) in dichloromethane ($5 \mathrm{~cm}^{3}$) was added bromotrimethylsilane ($1.35 \mathrm{~g}, 8.56 \mathrm{mmol}$). The mixture was stirred at room temperature for 18 h . The solution was evaporated off and the residue was azeotroped with methanol $(\times 3)$. The residue was purified by column chromatography on C_{18} silica gel with water as eluent to afford the phosphonic acid 16 as pale pink crystals ($75 \mathrm{mg}, 56 \%$), m.p. $142-144{ }^{\circ} \mathrm{C}$; $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 267\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 11700\right) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $3420\left(\mathrm{H}_{2} \mathrm{O}\right)$ and $1675(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.05\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right)$ $2.20\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 3.20\left(3 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}_{2}\right) 3.41(1 \mathrm{H}, \mathrm{dd}, J$ 6 and $\left.10,2^{\prime}-\mathrm{H}\right), 3.57\left(2 \mathrm{H}, \mathrm{dd}, J 9, \mathrm{PCH}_{2} \mathrm{O}\right), 4.25\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right)$, $5.65\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, $\left.\mathrm{NH}_{2}\right), 6.70\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, NH_{2}) and $7.52(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ (Found: C, 33.2; H, 5.6; $\mathrm{N}, 21.6 . \mathrm{C}_{9} \mathrm{H}_{16} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{P} \cdot \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 33.4 ; \mathrm{H}, 5.6$; $\mathrm{N}, 21.7 \%$).

9-[3-(Diethoxyphosphorylmethoxy) pyrrolidin-1-yl]hypoxanthine 17.-To a solution of the imidazole $15(400 \mathrm{mg}, 1.11 \mathrm{mmol})$ in methanol $\left(4 \mathrm{~cm}^{3}\right)$ was added $5 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ hydrochloric acid ($0.220 \mathrm{~cm}^{3}, 1.10 \mathrm{mmol}$). The solvent was removed to leave the hydrochloride salt as a light brown gum. To a solution of the hydrochloride salt in N, N-dimethylformamide (DMF) ($3.5 \mathrm{~cm}^{3}$) was added triethyl orthoformate ($1.11 \mathrm{~g}, 7.51 \mathrm{mmol}$) and the mixture was heated at $120^{\circ} \mathrm{C}$ for 0.25 h . The solution was evaporated and the residue was purified by column chromatography on silica gel with dichloromethane-methanol (49:1, $9: 1)$ as eluent to afford the hypoxanthine 17 as a gum (269 mg , $63 \%) ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 245\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 10235\right) ; v_{\max }$ $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1680(\mathrm{C}=\mathrm{O})$ and $1240(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]$ $1.25(6 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}), 1.95\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 2.30\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 3.50$ ($3 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}$ and $5^{\prime}-\mathrm{H}_{2}$), $3.69\left(1 \mathrm{H}, \mathrm{dd}, J 6\right.$ and $10,2^{\prime}-\mathrm{H}$), 3.85 ($2 \mathrm{H}, \mathrm{dd}, J 9, \mathrm{PCH}_{2} \mathrm{O}$), $4.10\left(4 \mathrm{H}\right.$, pseudo quintet, $J 7, \mathrm{CH}_{2} \mathrm{O}$), $4.35\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 8.02(1 \mathrm{H}, \mathrm{s}, 2 / 8-\mathrm{H}), 8.16(1 \mathrm{H}, \mathrm{s}, 8 / 2-\mathrm{H})$ and $12.35\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, 1-H) (Found: MH^{+}, 372.1443. $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{P}$ requires $\mathrm{MH}, 372.1437$).

9-[3-(Phosphonomethoxy)pyrrolidin-1-yl]hypoxanthine 18.To a solution of the hypoxanthine $17(110 \mathrm{mg}, 300 \mu \mathrm{~mol})$ in dichloromethane ($4 \mathrm{~cm}^{3}$) was added bromotrimethylsilane (1.16 $\mathrm{g}, 5.92 \mathrm{mmol}$) and the mixture was stirred at room temperature for 24 h . The solution was evaporated and the residue was purified by column chromatography on C_{18} silica gel with water as eluent to give the phosphonic acid 18 as a solid ($69 \mathrm{mg}, 73 \%$), m.p. $275-278{ }^{\circ} \mathrm{C} ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} \quad 245\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right.$ $5870) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3420\left(\mathrm{H}_{2} \mathrm{O}\right), 1700(\mathrm{C}=\mathrm{O})$ and 1180 $\left[\left(\mathrm{PO}_{3} \mathrm{H}\right)^{-}\right] ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.97\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 2.30(1 \mathrm{H}, \mathrm{m}$, $\left.4^{\prime}-\mathrm{H}\right), 3.47\left(3 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}_{2}\right), 3.57\left(2 \mathrm{H}, \mathrm{d}, J 9, \mathrm{PCH}_{2} \mathrm{O}\right)$, $3.70\left(1 \mathrm{H}, \mathrm{dd}, J 6\right.$ and $\left.10,2^{\prime}-\mathrm{H}\right), 4.35\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 8.05(1 \mathrm{H}, \mathrm{s}$, $2 / 8-\mathrm{H}), 8.17(1 \mathrm{H}, \mathrm{s}, 8 / 2-\mathrm{H})$ and $12.35\left(1 \mathrm{H}\right.$, br s, $\mathrm{D}_{2} \mathrm{O}$ exchangeable, 1-H) (Found: C, 37.4; H, 4.5; N, 22.1. $\mathrm{C}_{10} \mathrm{H}_{14}{ }^{-}$ $\mathrm{N}_{5} \mathrm{O}_{5} \mathrm{P} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 37.6 ; \mathrm{H}, 4.6 ; \mathrm{N}, 21.9 \%$).

9-[3-(Diethoxyphosphorylmethoxy)pyrrolidin-1-yl]adenine 19.-To a solution of the hypoxanthine $17(245 \mathrm{mg}, 0.66 \mathrm{mmol})$ in dichloromethane ($7 \mathrm{~cm}^{3}$) were added triethylamine $(100 \mathrm{mg}$, 1.00 mmol), $2,4,6$-triisopropylbenzenesulfonyl chloride (250 mg , 8.25 mmol) and 4-(dimethylamino)pyridine (DMAP) ($8 \mathrm{mg}, 65$ $\mu \mathrm{mol}$) and the solution was stirred at room temperature for 3 h before being washed with water, then the organic portion was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated. The residue was dissolved in saturated ethanolic ammonia ($30 \mathrm{~cm}^{3}$) and the solution was heated at $80^{\circ} \mathrm{C}$ in a stainless steel bomb for 5 h . The solvent was removed, and the residue was partitioned between saturated aq. sodium hydrogen carbonate ($20 \mathrm{~cm}^{3}$) and dichloromethane ($4 \times 20 \mathrm{~cm}^{3}$). The combined organic portions were dried (MgSO_{4}), filtered, and evaporated. The residue was purified by column chromatography on silica gel with ethyl acetate-methanol ($4: 1,2: 1$) as eluent to give the adenine 19 as a gum ($53 \mathrm{mg}, 22 \%$) which slowly crystallized to a solid, m.p. 122$123^{\circ} \mathrm{C} ; \quad \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} \quad 260\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} \quad 13670\right)$; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3305\left(\mathrm{NH}_{2}\right), 3145\left(\mathrm{NH}_{2}\right), 1670\left(\mathrm{NH}_{2}\right), 1595$ (adenine) and $1250(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.26(6 \mathrm{H}, \mathrm{t}, J 7$, $\mathrm{Me}), 1.96\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 2.32\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 3.52\left(3 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}_{2}\right), 3.75\left(1 \mathrm{H}, \mathrm{dd}, J 6\right.$ and $\left.10,2^{\prime}-\mathrm{H}\right), 3.84(2 \mathrm{H}, \mathrm{d}, J 9$, $\left.\mathrm{PCH}_{2} \mathrm{O}\right), 4.07\left(4 \mathrm{H}\right.$, pseudo quintet, $\left.J 7, \mathrm{CH}_{2} \mathrm{O}\right), 4.35(1 \mathrm{H}, \mathrm{m}$, $\left.3^{\prime}-\mathrm{H}\right), 7.25\left(2 \mathrm{H}, \mathrm{br}\right.$ s, $\mathrm{D}_{2} \mathrm{O}$ exchangeable, $\left.\mathrm{NH}_{2}\right), 8.11(1 \mathrm{H}, \mathrm{s}$, $2 / 8-\mathrm{H})$ and $8.16(1 \mathrm{H}, \mathrm{s}, 8 / 2-\mathrm{H})$ (Found: MH^{+}, 371.1594 . $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{P}$ requires $M \mathrm{H}, 371.1597$).

9-[3-(Phosphonomethoxy)pyrrolidin-1-y!]adenine 20.-To a solution of the adenine $19(190 \mathrm{mg}, 513 \mu \mathrm{~mol})$ in dichloromethane $\left(8 \mathrm{~cm}^{3}\right)$ was added bromotrimethylsilane $(1.57 \mathrm{~g}, 10.3$ mmol) and the mixture was stirred at room temperature for 16 h. The solvent was removed and the residue was azeotroped with methanol $(\times 3)$ and acetone-water ($1: 1$) $(\times 3)$. The residue was purified by column chromatography on C_{18} silica gel with water as eluent to give the adenine 20 as a solid (116 mg , 72%), m.p. $264-266^{\circ} \mathrm{C} ; \lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 260\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1}\right.$ $\left.\mathrm{cm}^{-1} 13290\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3330\left(\mathrm{NH}_{2}\right), 3150\left(\mathrm{NH}_{2}\right), 1670$ $\left(\mathrm{NH}_{2}\right)$ and $1165\left[\left(\mathrm{PO}_{3} \mathrm{H}\right)^{-}\right] ; \delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}\right) 2.20\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 2.40$ ($1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}$), $3.45-3.80\left(6 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{2}, 5^{\prime}-\mathrm{H}_{2}\right.$ and $\mathrm{PCH}_{2} \mathrm{O}$), $4.43\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 8.28(1 \mathrm{H}, \mathrm{s}, 2 / 8-\mathrm{H})$ and $8.44(1 \mathrm{H}, \mathrm{s}, 8 / 2-\mathrm{H})$ (Found: C, 37.6; H, 4.7; N, 26.05. $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{P} \cdot 0.4 \mathrm{H}_{2} \mathrm{O}$ requires C, 37.4; H, 4.95; N, 26.15\%).

Acknowledgements

We thank Mr. M. R. Boyd, Dr. R. M. Perkins and their colleagues for antiviral data, Dr. S. A. Readshaw for NMR studies and Dr. A. G. Brown for his support of this work.

References

1 E. De Clercq, A. Holý, I. Rosenberg, T. Sakuma, J. Balzarini and P. C. Maudgal, Nature, 1986, 323, 464.

2 E. De Clercq, T. Sakuma, M. Baba, R. Pauwels, J. Balzarini, I. Rosenberg and A. Holý, Antiviral Res., 1987, 8, 261
3 J. J. Bronson, I. Ghazzouli, M. J. M. Hitchcock, R. R. Webb, II and J. C. Martin, J. Med. Chem., 1989, 32, 1457.

4 R. Pauwels, J. Balzarini, D. Schols, M. Baba, J. Desmyter, I. Rosenberg, A. Holý and E. De Clercq, Antimicrob. Agents Chemother., 1988, 32, 1025.
5 C. U. Kim, B. Y. Luh and J. C. Martin, J. Med. Chem., 1990, 33, 1797.
6 J. J. Bronson, C. U. Kim, I. Ghazzouli, M. J. M. Hitchcock, E. Kern and J. C. Martin, A.C.S. Symp. Ser., 1989, 401, 72.
7 C. U. Kim, P. F. Misco, B. Y. Luh and J. C. Martin, Heterocycles, 1990, 31, 1571.
8 C. U. Kim, P. F. Misco, B. Y. Luh and J. C. Martin, Tetrahedron Lett., 1990, 31, 3257.
9 D. M. Duckworth, M. R. Harnden, R. M. Perkins and D. N. Planterose, Nucleosides, Nucleotides, 1991, 10, 427.
10 D. M. Duckworth, M. R. Harnden, R. M. Perkins and D. N. Planterose, Antiviral Chem. Chemother., 1991, 2, 229.
11 M. R. Harnden, L. J. Jennings and A. Parkin, Synthesis, 1991, 947.
12 C. U. Kim, P. F. Misco, B. Y. Luh, M. J. M. Hitchcock, I. Ghazzouli and J. C. Martin, J. Med. Chem., 1991, 34, 2286.
13 C. U. Kim, B. Y. Luh and J. C. Martin, Tetrahedron Lett., 1992, 33, 25.
14 S. Halazy, Antiviral Res., 1991, 15, Suppl. 1, 55.
15 D. M. Coe, H. Hilpert, S. A. Noble, M. R. Peel, S. M. Roberts and R. Storer, J. Chem. Soc., Chem. Commun., 1991, 312.

16 C. U. Kim, B. Y. Luh, P. F. Misco and J. C. Martin, Nucleosides, Nucleotides, 1991, 10, 371
17 C. U. Kim, B. Y. Luh and J. C. Martin, J. Org. Chem., 1991, 56, 2642.
18 M. R. Harnden and R. L. Jarvest, Tetrahedron Lett., 1991, 32, 3863.
19 M. R. Harnden and R. L. Jarvest, J. Chem. Soc., Perkin Trans. 1, 1991, 2073.
20 T. S. Mansour and H. Jin, Bioorg. Med. Chem. Lett., 1991, 1, 757.
21 Y. H. Lee, H. K. Kim, I. K. Youn and Y. B. Chae, Bioorg. Med. Chem. Lett., 1991, 1, 287.
22 M. Bodenteich and H. Griengl, Tetrahedron Lett., 1987, 28, 5311.
23 Y. F. Shealy, C. A. O'Dell and M. C. Thorpe, J. Heterocycl. Chem., 1981, 18, 383.
24 T.-S. Lin, M. S. Chen, C. McLaren, Y.-S. Gao, I. Ghazzouli and W. H. Prusoff, J. Med. Chem., 1987, 30, 440.
25 C. L. Leese and G. M. Timmis, J. Chem. Soc., 1961, 3818.
26 R. N. Taylor, G. Shaw, D. V. Wilson and D. N. Butler, J. Chem. Soc., 1961, 4845.
27 E. Richter, J. E. Loeffler and E. C. Taylor, J. Am. Chem. Soc., 1960, 82, 3144.
28 B. L. Gaffney, L. A. Marky and R. A. Jones, Tetrahedron, 1984, $40,3$.
29 P. Herdewijn and A. Van Aerschot, Tetrahedron Lett., 1989, 30, 855.
30 J. F. Gerster, J. W. Jones and R. K. Robins, J. Org. Chem., 1963, 28, 945.

31 A. Albert and E. P. Serjeant, Determination of Ionization Constants, Chapman and Hall, London, 3rd edn., 1984, p. 152.
32 A. Parkin, J. Chem. Soc., Perkin Trans. I, 1991, 2983
33 W. W. Zorbach and R. S. Tipson, Synthetic Procedures in Nucleic Acid Chemistry, Wiley, New York, 1973, vol. 2, pp. 247, 259.

Paper 2/03080B
Received 10th June 1992
Accepted 16th June 1992

[^0]: * The basic $\mathrm{p} K_{\mathrm{a}}$ of acetylhydrazine is 3.24 .

